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Abstract

This work presents accurate numerical calculations of the natural frequencies for elastic rectangular
plates of variable thickness with various combinations of boundary conditions. The thickness variation in
one or two directions of the plate is taken in polynomial form. The first-order shear deformation plate
theory of Mindlin and the higher-order shear deformation plate theory of Reddy have been applied to the
plate analysis. The governing equations and the boundary conditions are derived using the dynamic version
of the principle of minimum of the Lagrangian function. The solution is obtained by the extended
Kantorovich method. This approach is combined with the exact element method for the vibration analysis
of members with variable flexural rigidity, which provides for the derivation of the exact dynamic stiffness
matrix of varying cross-sections strips. The large number of numerical examples demonstrates the
applicability and versatility of the present method. The results obtained by both shear deformation theories
are compared with those obtained by the classical thin plate theory and with published results.
r 2005 Elsevier Ltd. All rights reserved.
1. Introduction

Plate elements with varying thickness are used in civil, mechanical, aeronautical and marine
structures. The consideration of free vibration of such plates is essential to have an efficient and
see front matter r 2005 Elsevier Ltd. All rights reserved.
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reliable design. The use of variable thickness helps to reduce the weight of structural elements and
improve the utilization of the material.
The classical Kirchhoff thin plate theory (CPT) is usually used to carry out vibration analysis

of rectangular plates. CPT assumptions are satisfactory for low mode computation of truly
thin plate, but they can lead to inaccuracy in higher modes calculation or when the ratio of
thickness to the dimension of plate is relatively large. This is because the effects of rotary inertia,
which is neglected in most references, and the transverse shear deformations, which cannot be
considered in the Kirchhoff theory, become significant in thick plates. For that reason a
number of shear deformation plate theories were developed. The simplest one is the first-order
shear deformation plate theory (FOPT) that is famous as the Reissner–Mindlin theory. This
approach extends the kinematic assumptions of the CPT by releasing the restriction on the
angle of shearing deformations [1,2]. The transverse shear strain is assumed to be constant
through the thickness of the plate, and a shear correction factor is introduced to correct the
discrepancy between the actual transverse shear stress distribution and those computed using the
kinematic relations of this theory. The shear correction factors depend not only on geo-
metric parameters, but also on the loading and boundary conditions of the plate. Second
and higher-order shear deformation plate theories (HOPT) [1,3,4] use higher-order polynomials
in the expansion of the displacement components through the thickness of the plate. Accord-
ing to the assumptions of HOPT the restriction on warping of the cross-section is relaxed,
and allows variation in the thickness direction of the plate. Unlike the FOPT, the HOPT requires
no shear correction factors.
By using various kinds of analytical and numerical methods, many researchers have extensively

studied free vibration of rectangular thick plates with constant thickness according to HOPT [3–6]
and FOPT [7–9] approaches and rectangular thin plate with variable thickness [10,11].
However, the analysis of rectangular thick plates with non-uniform thickness has attracted less
attention. Mikami and Yoshimura [12] have applied the collocation method with orthogonal
polynomials to calculate the natural frequencies for rectangular Reissner–Mindlin plates
with linear thickness variation. Al-Kaabi and Aksu [14] have presented a method based on a
variational principle in conjunction with finite difference technique for analysis of Reissner–
Mindlin plates of linearly [13] and parabolically [14] varying thickness. Based on the FOPT,
Mizusawa [15] has employed the spline strip method for computation of natural frequencies
for the tapered rectangular plates. In all these studies, only plates with two opposite simply
supported edges perpendicular to direction of thickness variation are considered. Cheung
and Zhou [16] have used the Rayleigh–Ritz method for free vibration solution of rectangular
Reissner–Mindlin plates with variable thickness and different boundary conditions. The variation
of the thickness in their work is described by a power function of the Cartesian coordinates.
To the best of our knowledge, no solutions have been given for the problem of free vibration
of rectangular plates with variable thickness based on the higher-order shear deformation
plate theories.
The object of the present work is to give highly accurate solutions for the free vibration problem

of rectangular plates with any general polynomial variation of the thickness, including the effect
of the shear deformations and rotary inertia. The dynamic version of the principle of minimum of
the Lagrangian function is adopted in the derivation of the governing equations and the boundary
conditions, for the Reissner–Mindlin FOPT and the HOPT of Reddy. The solution is based on
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the extended Kantorovich method [9,17,18]. According to this approach the solution is assumed
to be separable in the directions of the plate edges. Then, the solution in one direction, x for
example, is specified a priori, and the solution in the y direction is determined by solving an
ordinary differential equation derived from the associated variational process with appropriate
boundary conditions. In the next step, the obtained solution is used as the known function, while
the solution in the second direction is re-determined by another Kantorovich solution process.
These iterations are repeated until the result converges to a desired degree. In the present work
one-term approximation was used in the Kantorovich method. This expansion enables to obtain
only approximate results for the natural frequencies, and for the vibration mode shapes. The exact
modes will have curved nodal lines, and the single-term expansion will result in straight nodal
lines that are parallel to the plate edges. The convergence to approximate values of frequency is
very rapid.
In the solution in one direction, the exact element method for the vibration analysis of

members with variable cross-sections is used [19]. This approach provides for the derivation of the
exact dynamic stiffness matrix. The natural frequency is found as a value that leads to the
singularity of the stiffness matrix. Free vibrations of rectangular thick plates are analyzed by
varying the plate-aspect ratios, and the thickness-width and taper ratios. Two types of thickness
variations are considered, namely linear and parabolic, and various combinations of boundary
conditions. The results obtained by both shear deformation theories (FOPT and HOPT) are
compared with those from the classical plate theory (CPT) and with published results. Many new
results are also given.
2. Analysis of shear deformable rectangular plates

Consider an isotropic rectangular plate of planform Lx by Ly with variable thickness h̄ðx; yÞ,
which is separable function of the coordinates ðx; yÞ. The plate has arbitrary boundary conditions.
The coordinate system is taken such that the x2y plane coincides with the middle plane of the
plate (see Fig. 1).
h(x)

Lx

Ly

x

y

h0

H(y)

Fig. 1. Geometry and the coordinate system of rectangular plates with linear variation of thickness in both directions.
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2.1. First-order shear deformation plate theory

According to the Reissner–Mindlin theory for harmonic motion, the displacement field is
taken as

ū x; y; z; tð Þ ¼ zc̄x x; y; tð Þ ¼ zcx x; yð Þeiot, (1a)

v̄ x; y; z; tð Þ ¼ zc̄y x; y; tð Þ ¼ zcy x; yð Þeiot, (1b)

w̄ x; y; z; tð Þ ¼ w̄0 x; y; tð Þ ¼ w0 x; yð Þeiot, (1c)

where ðū; v̄; w̄Þ are the displacement components along the ðx; y; zÞ coordinate directions,
respectively; w̄0 is the transverse deflection of a point on the middle plane, cx and cy denote the
rotations around to the x and y axes, correspondingly and o denotes the angular natural
frequency. The displacement field of Eqs. (1a–c) results in the following expression for strain
energy [9]:

Umax ¼
1

2

Z Z
A

D̄

qcx

qx

� �2
þ

qcy

qy

� �2
þ 2n qcx

qx

qcy

qy

þ 1
2
1� nð Þ

qcx

qy
þ

qcy

qx

� �2
0
BB@

1
CCAþ

þkGh̄ cx þ
qw0

qx

� �2
þ kGh̄ cy þ

qw0

qy

� �2

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;
dxdy, (2)

where D̄ ¼ Eh̄
3
=12=ð1� n2Þ is the bending rigidity of the plate, G ¼ E=2ð1þ nÞ is the shear

modulus, E denotes Young’s modulus of elasticity and n is Poisson’s ratio. The shear correction
factor k is introduced to compensate for the discrepancy between the true parabolic distribution
of transverse shear stresses and the constant state that resulted from the kinematic assumptions
of this theory. For a comprehensive discussion on the value of the shear correction factor see
Refs. [1,2].
For free vibration, the maximum kinetic energy can be expressed in terms of the general

displacements, Eq. (1a–c), in the following form [9]:

Tmax ¼
o2r
2

ZZ
A

h̄w2
0 þ

h̄
3

12
c2

x þ c2
y

� �" #
dxdy, (3)

where r is the mass density of the plate’s material.
The full energy functional P can be written in terms of strain energy of bending and the kinetic

energy of vibration as follow

P ¼ Umax � Tmax. (4)

According to the Kantorovich method, the solution is assumed separable, and can be written as

w0 x; yð Þ ¼ w xð ÞW yð Þ, (5a)

cx x; yð Þ ¼ f xð ÞF yð Þ, (5b)

w x; yð Þ ¼ w xð ÞW yð Þ, (5c)
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In the same manner, the thickness of the plate h̄ðx; yÞ is separated as

h̄ x; yð Þ ¼ h0h xð ÞH yð Þ, (6)

where h0 is the thickness at the origin, hðxÞ and HðyÞ are the functions of variation of the thickness
in the x and y directions respectively (See Fig. 1). Based on Eqn. (6), the flexural rigidity of the
plate D̄ðx; yÞ becomes

D̄ x; yð Þ ¼ d0d xð ÞD yð Þ, (7)

where

d0 ¼ Eh30=ð12ð1� v2ÞÞ; dðxÞ ¼ ½hðxÞ�3; DðyÞ ¼ ½HðyÞ�3.

For the convenience of subsequent derivation the following symbolism is defined: the lower case
letters are used for functions of the x direction only, and capital letters for functions in the y
direction. Two new variables are introduced as well

a0 ¼
h3
0

12
; g0 ¼ kGh0. (8)

Substitutions of Eqs. (5a–c), their derivatives and Eqs. (6, 7) into Eq. (4) yield

P ¼
1

2

Z Lx

0

Z Ly

0

df 2
;x d0DF2|fflfflffl{zfflfflffl}

S1

þdf2 d0DF2
;y|fflfflffl{zfflfflffl}

S2

þ2df ;xf nd0DFF;y|fflfflfflfflfflffl{zfflfflfflfflfflffl}
S3

2
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þ df 2 1

2
1� nð Þd0DF2
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1
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1
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S6
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S7

þ2hf w;x g0H FW|fflfflfflfflffl{zfflfflfflfflffl}
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;x g0HW 2|fflfflfflffl{zfflfflfflffl}
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þhf2 g0HF2|fflfflffl{zfflfflffl}
S10
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3
75dxdy. ð9Þ

In order to obtain equations involving only one variable, for example x, functions in the y
direction are assumed for the time being as known, and after integration over this direction the
energy functional take the form

P ¼
1

2

Z Lx

0

S1df 2
;x þ S2df

2
þ 2S3df ;xfþ S4df 2

þ 2S5dff;x þ S6df
2
;x

þS7hf 2
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;x þ S10hf
2
þ 2S11hf wþ S12h w2

�S13df 2
� S14df

2
� S15hw2

0
BB@

1
CCAdx, (10)
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where the coefficients S1 through S15 are defined as

S1 ¼

Z Ly

0

d0DF2dy; S2 ¼

Z Ly

0

d0DF2
;ydy;
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Z Ly

0
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Z Ly

0
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1

2
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Z Ly

0

g0H FWdy,

S9 ¼

Z Ly

0

g0HW 2dy; S10 ¼

Z Ly

0

g0HF2dy,

S11 ¼

Z Ly

0

g0HFW ;ydy; S12 ¼

Z Ly

0

g0HW 2
;ydy,

S13 ¼

Z Ly

0

o2ra0D F2dy; S14 ¼

Z Ly

0

o2ra0AF2,

S15 ¼

Z Ly

0

o2r h0HW 2. ð11Þ

The evaluation of these constants will be performed after the assumption of the functions in the
y direction is made (see Section 3).
According to the dynamic version of the principle of virtual displacement, i.e., Hamilton’s

principle the first variation of the functional should be equal to zero. Thus, variation of Eq. (10)
and integration by parts yields

dP ¼
Z Lx

0

S11hfþ S12hw� S15hw� S8h;xf � S8hf ;xþ

�S9h;xw;x � S9hw;xx

 !
dw

þ

S4df þ S5df;x þ S7hf þ S8hw;x � S13dfþ

�S1d ;xf ;x � S1df ;xx � S3d ;xf� S3df;x

 !
df

þ

S2dfþ S3df ;x þþS10hfþ S11hw� S14dfþ

�S5d ;xf � S5df ;x � S6d ;xf;x � S6df;xx

 !
df

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA

dx

þ S8hf þ S9hw;x

� �
dwjLx

0

þ S1df ;x þ S3df
� �

df
��Lx

0

þ S5df þ S6df;x
� �

df
��Lx

0
¼ 0. ð12Þ
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Each term in the above equation has to be equal to zero. From the first integral, the system of
differential equations is obtained:

for dw : �S9hw;xx � S9h;xw;x þ S12 � S15ð Þhw

�S8hf ;x � S8h;xf þ S11hf ¼ 0;
(13a)

for df : �S1df ;xx � S1d ;xf ;x þ S4df þ S7hf � S13af þ S8hw;x

þ S5 � S3ð Þdf;x � S3d ;xf ¼ 0;
(13b)

for df : �S6df;xx � S6d ;xf;x þ S2dfþ S10hf� S14dfþ S11hw

þ S3 � S5ð Þdf ;x � S5d ;xf ¼ 0:
(13c)

The remaining expressions give the natural boundary conditions

dw : Q ¼ S8h f þ S9hw;x

� ���Lx

0
, (14a)

df : Mb ¼ S1df ;x þ S3df
� ���Lx

0
, (14b)

df : Mt ¼ S5df þ S6df;x
� ���Lx

0
, (14c)

where Q is the shear force, Mb is the bending moment and Mt is the twisting moment on the
corresponding edge of the plate.
The dimensionless coordinates x ¼ x=Lx and Z ¼ y=Ly are used for the solution of the system of

Eqs. (13a–c). The unknown displacements are assumed as infinite power series of the following form:

w xð Þ ¼
X1
i¼0

wix
i, (15a)

f xð Þ ¼
X1
i¼0

f ix
i, (15b)

f xð Þ ¼
X1
i¼0

fix
i. (15c)

Also the flexural rigidity and thickness parameters of the plate are taken in polynomial form as
follows

d xð Þ ¼
Xn

j¼0

djx
j, (16a)

h xð Þ ¼
Xm

j¼0

hjx
j, (16b)

where m, n are integers expressing the number of terms in each series. This description is very
general, and many functions can be represented in this way to any desired accuracy.
All the polynomial coefficients wi, f i and fi of Eqs. (15a–c) can be found based on the first two

terms of the each series [9,19]. Recurrence formulas for calculations of the wiþ2, f iþ2 and fiþ2 are
obtained by substituting the assumed polynomial functions of Eqs. (15a–c, 16a–b) and their
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derivatives into the system of Eqs. (13a–c) (See Appendix A). The first two terms of each series
should be found using the boundary condition [9,19]. Based on this solution technique, the exact
shape functions for dynamic stiffness matrix assembling can be calculated. The degrees of
freedom, for the FOPT formulation, are the lateral displacement and two rotations around the x

and y axes at both ends of the strip element. The detail derivations of the stiffness matrix terms are
given in Ref. [9].

2.2. Higher-order shear deformation plate theory

The displacement fields for the Third-order shear deformation plate theory of Reddy [1] are
taken as

ū x; y; z; tð Þ ¼ zcx �
4z3

3h2
cx þ

qw0

qx

� �� �
eiot, (17a)

v̄ x; y; z; tð Þ ¼ zcy �
4z3

3h2
cy þ

qw0

qy

� �� �
eiot, (17b)

w̄ x; y; z; tð Þ ¼ w0e
iot. (17c)

Based on the above displacement fields, the strain energy of the plate can be written as
follows [9]

U ¼
1

2

Z Ly

0

Z Lx

0

D̄
68

105

qcx
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� �2
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þ
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� �2
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�
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þ 2n

68

105

qcx

qx

qcy

qy
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�
þ

1� nð Þ
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qcx

qy
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þ
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qcy

qx

� �2

þ
136
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qcx

qy

qcy

qx
þ

4
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q2w0

qx@y

� �2

�
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105

q2w0

qxqy

qcx

qy
�

64

105

q2w0

qxqy

qcy

qx

!#

þ
8

15
Gh̄ cx þ

qw

qx

� �2

þ
8

15
Gh̄ cy þ

qw

qy

� �2
)
dxdy. ð18Þ

Utilization of the Kantorovich solution technique and integration over the y direction yields

U ¼
1

2

Z Lx

0

S1df 2
;x þ S2df

2
þ S3dw2

;xx þ S4dw2 � 2S5df ;xw;xx

þ2S6dfwþ 2S7df ;xf� 2S8df ;xwþ 2S9dfw;xx

þ2S10dww;xx þ S11df 2
þ S12df

2
;x þ 2S13dff;x

þS14dw2
;x � 2S15dw;xf � 2S16dw;xf;x þ S17hf 2

þ2S18hf w;x þ S19hw2
;x þ S20hf

2
þ 2S21hfwþ S22hw2

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;
dx, (19)
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where the S-coefficients are defined as

S1 ¼

Z Ly

0

68

105
d0DF 2 dy; S2 ¼

Z Ly

0

68

105
d0DF2

;y dy,

S3 ¼

Z Ly

0

1

21
d0DW 2 dy; S4 ¼

Z Ly

0

1

21
d0DW 2

;yy dy,

S5 ¼

Z Ly

0

16

105
d0DFW dy; S6 ¼

Z Ly

0

�
16

105
d0DF;yW ;yy dy,

S7 ¼

Z Ly

0

68

105
nd0DFF;y dy; S8 ¼

Z Ly

0

16
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nd0DFW ;yy dy,

S9 ¼

Z Ly

0

�
16

105
nd0DF;yW dy; S10 ¼

Z Ly

0

1

21
nd0DWW ;yy dy,

S11 ¼

Z Ly

0

34

105
1� nð Þd0DF2

;y dy; S12 ¼

Z Ly

0

34

105
1� nð Þd0DF2 dy,

S13 ¼

Z Ly

0

34

105
1� nð Þd0DF ;yF dy; S14 ¼

Z Ly

0

2 1� nð Þ

21
d0DW 2

;y dy

S15 ¼

Z Ly

0

16

105
1� nð Þd0DF ;yW dy; S16 ¼

Z Ly

0

16

105
1� nð Þd0DFW dy,

S17 ¼

Z Ly

0

8

15
Gh0HF 2 dy; S18 ¼

Z Ly

0

8

15
Gh0HFW dy,

S19 ¼

Z Ly

0

8

15
Gh0HW 2 dy; S20 ¼

Z Ly

0

8

15
Gh0HF2 dy,

S21 ¼

Z Ly

0

8

15
Gh0HFW ;y dy; S22 ¼

Z Ly

0

8

15
Gh0HW 2

;y dy. ð20Þ

The assumed free vibration is harmonic and based on the displacement field of Eqs. (17a–c), the
expression of kinetic energy takes the following form [9]:

T ¼ o2 r
2

Z Z
A

17
315

h3c2
x þ

17
315

h3c2
y

þ 8
315

h3cx
qw0

qx
þ 8

315
h3cy

qw0

qy

þhw2 þ h3

252
qw0

qx

� �2
þ h3

252
qw0

qy

� �2
2
66664

3
77775dxdy. (21)

Separation of the variables (Eqs. 5a–c) and integration over assumed direction, using the notation
of Eqs. (7) and (8), yield

T ¼
1

2

Z Lx

0

�S23df 2
� S24df

2
þ 2S25df w;x � 2S26dfw

�S27hw2 þ S28dw2
;x � S29dw2

( )
dx, (22)
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where S23 through S29 are

S23 ¼

Z Ly

0

�
17

315
o2ra0DF 2 dy; S24 ¼

Z Ly

0

�
17

315
o2ra0AF2 dy,

S25 ¼

Z Ly

0

4

315
o2ra0DFW dy; S26 ¼

Z Ly

0

�
4

315
o2ra0AFW ;y dy,

S27 ¼

Z Ly

0

�o2rh0HW 2 dy; S28 ¼

Z Ly

0

1

252
o2ra0AW 2 dy.

S29 ¼

Z Ly

0

�
1

252
o2ra0DW 2

;y dy, ð23Þ

According to Hamilton’s principle the first variation of the functional should be equal to zero

dP ¼ dU � dT ¼ 0. (24)

After integrating the expressions of virtual energy by parts and collecting the coefficients of dw, df

and df, the three equations of motion for the strip element are obtained in following form:
for dw:

S3dw;xxxx þ 2S3d ;xw;xxx þ S3d ;xxw;xx þ 2S10 � S14ð Þdw;xx � S19hw;xx

þS28dw;xx þ 2S10 � S14ð Þd ;xw;x � S19h;xw;x þ S28d ;xw;x þ S10d ;xxw

þS4dwþ S22 þ S27ð Þhwþ S29dw� S5df ;xxx � 2S5d ;xf ;xx � S5d ;xxf ;x

þ S15 � S8ð Þdf ;x � S18hf ;x þ S25df ;x þ S15d ;xf � S18h;xf þ S25d ;xf

þS9df;xx þ S16df;xx þ 2S9 þ S16ð Þd ;xf;x þ S9d ;xxfþ S6dfþ S21hfþ S26df

0
BBBBBB@

1
CCCCCCA ¼ 0; (25a)

for df :

S5dw;xxx þ S5d ;xw;xx þ S8 � S15ð Þdw;x þ S18hw;x

�S25dw;x þ S8d ;xw� S1df ;xx � S1d ;xf ;x þ S11df

þS17hf þ S23df þ S13 � S7ð Þdf;x � S7d ;xf

0
B@

1
CA ¼ 0; (25b)

for df:

S9 þ S16ð Þdw;xx þ S16d ;xw;x þ S6dwþ S21hwþ S26dw

S7 � S13ð Þdf ;x � S13d ;xf � S12df;xx � S12d ;xf;x
þS2dfþ S20hfþ S24df

0
B@

1
CA ¼ 0. (25c)

The natural boundary conditions (forces and moments at the ends of strip elements) are obtained
as

dw : Q ¼

�S3dw;xxx � S3d ;xw;xx þ S14 � S10ð Þdw;x þ S19hw;x

�S28dw;x � S31w;x � S33w� S10d ;xw

þS5df ;xx þ S5d ;xf ;x � S15df þ S18hf � S25df

� S9 þ S16ð Þdf;x � S9d ;xf

0
BBBB@

1
CCCCAjLx

0 , (26a)
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dw;x : R ¼ S3dw;xx � S5df ;x þ S9dfþ S10dw
� �

j
Lx

0 , (26b)

df : Mb ¼ S1df ;x � S5dw;xx þ S7df� S8dw
� �

j
Lx

0 , (26c)

df : Mt ¼ S12df;x þ S13df � S16dw;x

� �
j
Lx

0 (26d)

Note that unlike the FOPT, an additional higher-order bending moment R appears in the HOPT
approach.
The dimensionless variables x and Z, and the assumption of polynomial variation of the all

functions over the strip, Eqs. (15a–c) and (16a–b), are used again for the solution. The recurrence
formulas for the polynomial terms, which are obtained by substituting the assumed functions into
the Eqs. (26a–c) [9], are given in Appendix B. The rest of procedure is the same as in [9].
3. Numerical examples and discussion

In order to obtain a high precision solution for the free vibration problem of thick plates with
polynomial variation of thickness, and simultaneously demonstrate the applicability and
versatility of the present method, numerical calculations have been performed for a large number
of plates with variable thickness for different taper ratios, length–width ratios, thickness–width
ratios and various combinations of boundary conditions. The frequencies are expressed in terms
of the dimensionless factor l ¼ oL2

yðrh0=d0Þ
1=2=p2. Nine dimensionless frequency values are given

for each case based on the three plate theories (CPT, FOPT, HOPT). The mode shapes of
vibration are defined by m and n, where these integers indicate the number of half-waves in the x
and y directions, respectively. In all calculations, Poisson’s ratio n is taken as 0.3. For the FOPT
solutions the shear correction factor k ¼ 5=6 is adopted [1,2]. The types of boundary conditions
which are used are:

Simply Supported-S for FOPT : w ¼ f ¼ 0;Mb ¼ 0;

for HOPT : w ¼ f ¼ 0;Mb ¼ R ¼ 0;

Simply Supported-S� for FOPT : w ¼ 0;Mb ¼Mt ¼ 0;

for HOPT : w ¼ 0;Mb ¼ R ¼Mt ¼ 0;

Clamped - C for FOPT : w ¼ f ¼ f ¼ 0;

for HOPT : w ¼ w;x ¼ f ¼ f ¼ 0;

Free - F for FOPT : Q ¼Mb ¼Mt ¼ 0;

for HOPT : Q ¼Mb ¼ R ¼Mt ¼ 0:

The plates are described by a symbolism defining the boundary conditions at their edges starting
from x ¼ 0 to x ¼ Lx, y ¼ 0, y ¼ Ly consequently. For example, CCFS denotes a plate with
clamped edges at x ¼ 0 and x ¼ Lx, free at y ¼ 0 and simply supported at y ¼ Ly. Two types of
the thickness variations are considered, namely linear and parabolic variations. The linear
variation of thickness is shown in Fig. 1 and defined as

h̄ x; yð Þ ¼ h0h xð ÞH yð Þ ¼ h0 1� bxx
� �

1� byZ
� �

, (27)
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where bx and by are the taper ratios in the x and y directions respectively defined as bx ¼

ðh0 � hðLxÞÞ=h0 and by ¼ ðh0 �HðLyÞÞ=h0.
Three forms of the parabolic variation of the thickness in the x direction are investigated,

namely arched, concave, and symmetric concave variations (Fig. 2). The arched form is given by

h̄ x; yð Þ ¼ h0 1� dx2
� �

; d ¼ 1� hL=h0. (28a)
L x L x L x

h0 h 0 h0

hL hL hL /2

(a) (b) (c)

Fig. 2. Parabolic variations of the plate thickness: (a) arched form; (b) concave form; (c) symmetric concave form.

Table 1

Comparison of the frequency factors l for x direction tapered Reissner–Mindlin square plates, (n ¼ 0:3, k ¼ p2=12,
bx ¼ 0:5)

Work h0=Ly Mode

1,1 1,2 2,1 2,2 1,3 3,1 3,2 2,3

SSSS

Present 0.1 1.4504 3.4743 3.5058 5.4838 6.5345 6.7038 8.5303 8.5921

Mizusawa [15] 1.4504 3.4743 3.5058 5.4840 6.5347 6.7039 8.5302 —

Present 0.2 1.3738 3.1096 3.1276 4.6613 5.4883 5.5657 6.8435 6.8725

Mizusawa [15] 1.3738 3.1096 3.1276 4.6613 5.4881 5.5656 6.8437 6.8726

Present 0.4 1.1664 2.3603 2.3637 3.2845 3.7942 3.8050 4.5043 4.5105

Mizusawa [15] 1.1665 2.3603 2.3637 3.2845 3.7942 3.8050 4.5043 4.5105

Work h0/Ly Mode

1,1 1,2 2,1 1,3 2,2 2,3 3,1

SSFF

Present 0.1 0.7201 1.2119 2.5569 2.6320 3.5362 4.9141 5.2300

Mikami and [12] 0.7226 1.2118 2.5561 2.6309 3.5362 — —

Mizusawa [15] 0.7201 1.2119 2.5570 2.6320 3.5362 4.9142 —

Present 0.2 0.6999 1.1414 2.3663 2.3780 3.1050 4.1894 4.5840

Mikami and Yoshimura [12] 0.7000 1.1410 2.3661 2.3776 3.1054 — —

Mizusawa [15] 0.6999 1.1414 2.3663 2.3780 3.1050 4.1894 4.5840

Present 0.4 0.6368 0.9668 1.9134 1.8534 2.2922 2.9752 3.3735

Mikami and Yoshimura [12] 0.6370 0.9666 1.8532 1.9135 2.2924 — —

Mizusawa [15] 0.6368 0.9668 1.8534 1.9013 2.2922 2.9751 3.3735
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The concave parabolic variation is expressed by

h̄ x; yð Þ ¼ h0 dx2 � 2dxþ 1
� �

; d ¼ 1� hL=h0. (28b)

The symmetric concave shape is given by

h̄ x; yð Þ ¼ h0 4dx2 � 4dxþ 1
� �

; d ¼ 1� h0:5L=h0. (28c)

The results obtained by the three theories are presented in table form for the different
configurations of the rectangular plates. For each case the thickness-width ratio h=Ly are varied
from 0.1 to 0.4. Note that ratios h=Ly ¼ 0:4 does not really ascribe to a plate, but it is used for
comparison and confirmation of the obtained results.
Table 2

Frequency factor l for CCCC plates with linear thickness variation in the x direction

Lx=Ly Theory h0=Ly Mode

1,1 2,1 3,1 1,2 2,2 3,2 1,3 2,3 3,3

bx ¼ 0:25
1 CPT — 3.1767 6.4782 11.6375 6.4650 9.5610 14.5677 11.5703 14.5959 19.4425

FOPT 0.1 2.9359 5.6690 9.5269 5.6634 8.0155 11.5315 9.5017 11.5459 14.6648

0.2 2.4762 4.4051 6.8797 4.4053 5.9646 8.1386 6.8771 8.1431 10.0038

0.3 2.0522 3.4468 5.1920 3.4483 4.5704 6.0848 5.1926 6.0865 7.3726

0.4 1.7180 2.7842 4.1282 2.7855 3.6567 4.8110 4.1288 4.8116 5.7875

HOPT 0.1 2.9401 5.6848 9.5699 5.6789 8.0466 11.5932 9.5434 11.6079 14.7608

0.2 2.4955 4.4654 7.0156 4.4650 6.0651 8.3127 7.0112 8.3187 10.2488

0.3 2.0894 3.5478 5.3939 3.5488 4.7268 6.3379 5.3933 6.3413 7.7148

0.4 1.7713 2.9142 4.3699 2.9150 3.8486 5.1120 4.3696 5.1140 6.1863

1.5 CPT — 2.3805 3.6844 5.8725 5.7909 7.0641 9.1165 10.8686 12.2946 14.2793

FOPT 0.1 2.2374 3.3882 5.2347 5.1371 6.1415 7.7319 9.0369 9.9931 11.3724

0.2 1.9385 2.8357 4.1795 4.0448 4.7456 5.8304 6.6004 7.1829 8.0699

0.3 1.6404 2.3380 3.3354 3.1826 3.7119 4.5069 4.9999 5.4159 6.0548

0.4 1.3935 1.9517 2.7316 2.5773 3.0040 3.6265 3.9824 4.3038 4.7980

HOPT 0.1 2.2397 3.3932 5.2452 5.1494 6.1591 7.7575 9.0732 10.0391 11.4289

0.2 1.9503 2.8575 4.2217 4.0959 4.8098 5.9151 6.7236 7.3244 8.2310

0.3 1.6644 2.3792 3.4094 3.2711 3.8172 4.6407 5.1863 5.6237 6.2889

0.4 1.4290 2.0100 2.8303 2.6920 3.1374 3.7935 4.2070 4.5552 5.0792

2 CPT — 2.1598 2.8153 3.9554 5.5555 6.3038 7.3752 10.5530 11.5590 12.6485

FOPT 0.1 2.0390 2.6267 3.6327 4.9549 5.5385 6.3948 8.8360 9.4841 10.2428

0.2 1.7778 2.2507 3.0364 3.9236 4.3202 4.9328 6.4936 6.8522 7.3504

0.3 1.5097 1.8911 2.5044 3.0929 3.3926 3.8605 4.9298 5.1743 5.5432

0.4 1.2846 1.6006 2.0940 2.5053 2.7508 3.1283 3.9298 4.1162 4.4060

HOPT 0.1 2.0409 2.6298 3.6377 4.9661 5.5530 6.4130 8.8695 9.5258 10.2903

0.2 1.7881 2.2652 3.0583 3.9717 4.3768 4.9977 6.6110 6.9860 7.4930

0.3 1.5312 1.9195 2.5455 3.1778 3.4869 3.9656 5.1098 5.3712 5.7506

0.4 1.3167 1.6417 2.1519 2.6162 2.8708 3.2609 4.1472 4.3506 4.6564
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In order to initiate the iterative procedure, initial functions should be assumed. According to
the present formulations of the two higher-order shear deformation theories, the solution is a set
of the dependent functions of the displacements. Therefore, in order to obtain correct relations
between the assumed functions, so that they may satisfy any boundary conditions, the initial
displacements are chosen as the lateral deflections and bending rotations of a Timoshenko beam
for FOPT and high-order beams for HOPT [20]. Both polynomials are taken from the appropriate
direction of the plate as a unit width strip. Although the beam shapes are not always congruent
with the plate’s displacement, the iteration convergence proves to be really fast. In the previous
applications of the extended Kantorovich method [9,18] it has been shown that the initial assumed
function is neither required to satisfy the essential boundary conditions nor the natural boundary
conditions, and the quality of the assumption influences only the number of iterations. In the
Table 3

Frequency factor l for CFFF plates with linear thickness variation in the x direction

Lx=Ly Theory h0=Ly Mode

1,1 2,1 3,1 1,2 2,2 3,2 1,3 2,3 3,3

bx ¼ 0:5
1 CPT — 0.3859 1.8485 4.7650 0.7563 2.4184 5.3746 1.9438 4.0317 7.2149

FOPT 0.1 0.3828 1.7835 4.4122 0.7350 2.2981 4.9206 1.8669 3.7320 6.4338

0.2 0.3737 1.6278 3.7222 0.6970 2.0598 4.1058 1.7335 3.2321 5.2280

0.3 0.3610 1.4435 3.0866 0.6500 1.8029 3.3869 1.5831 2.7623 4.2552

0.4 0.3458 1.2687 2.5955 0.6004 1.5752 2.8423 1.4380 2.3804 3.5464

HOPT 0.1 0.3828 1.7842 4.4171 0.7352 2.2995 4.9268 1.8675 3.7353 6.4439

0.2 0.3738 1.6324 3.7478 0.6979 2.0674 4.1356 1.7356 3.2463 5.2684

0.3 0.3614 1.4553 3.1380 0.6524 1.8198 3.4433 1.5876 2.7905 4.3263

0.4 0.3467 1.2889 2.6671 0.6048 1.6017 2.9186 1.4452 2.4223 3.6403

1.5 CPT — 0.1713 0.8201 2.1130 0.4645 1.3244 2.6892 1.6458 2.7964 4.3733

FOPT 0.1 0.1708 0.8063 2.0369 0.4519 1.2778 2.5535 1.5995 2.6447 4.0433

0.2 0.1684 0.7703 1.8578 0.4323 1.1906 2.2856 1.5120 2.3811 3.4888

0.3 0.1654 0.7210 1.6490 0.4083 1.0872 1.9997 1.4055 2.1054 2.9691

0.4 0.1617 0.6665 1.4544 0.3824 0.9852 1.7482 1.2958 1.8601 2.5482

HOPT 0.1 0.1708 0.8064 2.0376 0.4520 1.2783 2.5547 1.5995 2.6459 4.0465

0.2 0.1684 0.7710 1.8623 0.4327 1.1927 2.2926 1.5127 2.3859 3.5018

0.3 0.1654 0.7230 1.6604 0.4094 1.0923 2.0154 1.4069 2.1157 2.9955

0.4 0.1618 0.6705 1.4735 0.3843 0.9940 1.7728 1.2982 1.8770 2.5888

2 CPT — 0.0963 0.4606 1.1860 0.3353 0.9033 1.7220 1.5252 2.3179 3.2957

FOPT 0.1 0.0961 0.4560 1.1607 0.3262 0.8758 1.6558 1.4899 2.2177 3.0957

0.2 0.0952 0.4436 1.0968 0.3132 0.8283 1.5283 1.4191 2.0355 2.7496

0.3 0.0941 0.4256 1.0129 0.2974 0.7707 1.3807 1.3292 1.8324 2.3988

0.4 0.0927 0.4042 0.9248 0.2802 0.7109 1.2393 1.2638 1.6419 2.0959

HOPT 0.1 0.0962 0.4560 1.1609 0.3263 0.8760 1.6564 1.4900 2.2183 3.0972

0.2 0.0952 0.4438 1.0980 0.3134 0.8293 1.5310 1.4194 2.0377 2.7556

0.3 0.0941 0.4261 1.0163 0.2980 0.7731 1.3871 1.3299 1.8372 2.4118

0.4 0.0927 0.4053 0.9312 0.2813 0.7152 1.2500 1.2696 1.6501 2.1173



ARTICLE IN PRESS

Fig. 3. Free vibration modes and normalized frequency factors for CFFF plates with linear thickness variation in the x

direction: Lx=Ly ¼ 2:0, bx ¼ 0:25: HOPT solution.
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present work, the maximal tolerance for the relative error between the iteration steps is taken as
0.0001%. Unlike most of the other numerical methods, in which a better result is obtained by
increasing the number of unknowns, the solution in the extended Kantorovich method is
improved by continuous enhancement of the operator between successive iteration steps, without
additional unknowns.

3.1. Plates with linear thickness variation in the x direction

It appears that there are no available results for rectangular plates with variable thickness
computed based on any HOPT. Thus, the confirmation of the obtained results is made only with
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Table 4

Frequency factor l for CCCC square plates with linear thickness variation in the both directions

by Theory h0=Ly Mode

1,1 2,1 3,1 1,2 2,2 3,2 1,3 2,3 3,3

bx ¼ 0:25
0.25 CPT — 2.7667 5.6312 10.0754 5.6312 8.3356 12.7168 10.0754 12.7168 16.9537

FOPT 0.1 2.6022 5.0733 8.6089 5.0733 7.2403 10.5229 8.6089 10.5229 13.4632

0.2 2.2620 4.1002 6.4940 4.1002 5.6032 7.7258 6.4940 7.7258 9.5497

0.3 1.9215 3.2895 5.0065 3.2895 4.3892 5.8875 5.0065 5.8875 7.1625

0.4 1.6368 2.6965 4.0235 2.6965 3.5552 4.7022 4.0235 4.7022 5.6735

HOPT 0.1 2.6048 5.0832 8.6359 5.0832 7.2606 10.5643 8.6359 10.5643 13.5291

0.2 2.2749 4.1421 6.5921 4.1421 5.6763 7.8568 6.5921 7.8568 9.7365

0.3 1.9479 3.3650 5.1574 3.3650 4.5104 6.0855 5.1632 6.0887 7.4302

0.4 1.6765 2.7986 4.2192 2.7986 3.7105 4.9490 4.2192 4.9490 6.0012

0.5 CPT — 2.3209 4.6823 8.2375 4.7261 7.0243 10.7602 8.4456 10.6858 14.3012

FOPT 0.1 2.2208 4.3495 7.3887 4.3771 6.3217 9.3160 7.5108 9.2594 11.9744

0.2 1.9951 3.6870 5.9211 3.6943 5.1208 7.1690 5.9556 7.1420 8.9131

0.3 1.7458 3.0609 4.7226 3.0587 4.1284 5.6032 4.7272 5.5906 6.8489

0.4 1.5210 2.5639 3.8633 2.5588 3.4021 4.5387 3.8614 4.5325 5.4969

HOPT 0.1 2.2222 4.3545 7.4020 4.3826 6.3334 9.3408 7.5265 9.2842 12.0152

0.2 2.0026 3.7119 5.9804 3.7208 5.1695 7.2616 6.0212 7.2324 9.0474

0.3 1.7645 3.1060 4.8310 3.1110 4.2169 5.7586 4.8412 5.7407 7.0627

0.4 1.5477 2.6374 4.0091 2.6339 3.5228 4.7383 4.0109 4.7264 5.7617

bx ¼ 0:5
0.5 CPT — 1.9473 3.9309 6.9087 3.9309 5.9193 9.0421 6.9087 9.0421 12.0635

FOPT 0.1 1.8870 3.7253 6.3773 3.7253 5.4755 8.1202 6.3773 8.1202 10.5425

0.2 1.7410 3.2764 5.3441 3.2764 4.6231 6.5491 5.3441 6.5491 8.2249

0.3 1.5654 2.8060 4.3987 2.8060 3.8389 5.2674 4.3987 5.2674 6.4883

0.4 1.3947 2.4028 3.6690 2.4028 3.2241 4.3392 3.6690 4.3392 5.2862

HOPT 0.1 1.8876 3.7292 6.3851 3.7281 5.4820 8.1324 6.3845 8.1352 10.5669

0.2 1.7453 3.2906 5.3936 3.2913 4.6543 6.6099 5.3802 6.6100 8.3036

0.3 1.5755 2.8391 4.4729 2.8390 3.9002 5.3784 4.4734 5.3784 6.6475

0.4 1.4119 2.4543 3.7759 2.4543 3.3138 4.4913 3.7759 4.4913 5.4973
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existing FOPT solutions. Table 1 shows a comparison study of the natural frequency factors l for
two types of rectangular plates. As can be seen, similar or more precise results are achieved for
every case.
The natural frequency factors l for CCCC and CFFF plates tapered in the x-direction

calculated by using the three theories are given in Tables 2 and 3. The frequencies decrease with an
increase of the thickness-width ratio ðh=LyÞ for constant values of Lx=Ly. It is seen that this effect
is more pronounced for higher modes. Such behavior is due to the influence of rotary inertia and
shear deformations. Also, the discrepancy between the CPT results and the higher theories
(HOPT, FOPT) becomes more significant because the CPT does not take into account the
additional flexibility due to the shear stresses.
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The comparison of the HOPT and FOPT results for the tapered SSSS square plate shows
the difference between the results of these theories is very small in the cases of low thickness–
width ratios, and exceeds 1% only for relatively thick plates ðh=Ly ¼ 0:3; 0:4Þ for the higher
modes (two and more half waves). Also the influence of the thickness variation becomes smaller as
the aspect ratio Lx=Ly increases. This effect ascribes to more flexibility of the longer plates.
The first seven modes for rectangular CFFF plate with linear variation of the thickness are

presented in Fig. 3. It is seen that the increase in the thickness–width ratio causes not only the
decrease of the values of the natural frequency factor, but also change the order of mode shapes
(the 6th and 7th mode interchange).
3.2. Plates with linear thickness variation in both directions

The dimensionless factor of natural frequencies for CCCC and CFCF plates with linear
variation thickness in the both directions are given in Tables 4 and 5. The first six modes for free
vibration of the CFCF plate tapered in both directions are shown in Fig. 4. Although for this case
the assumed separation, Eqs. (5a–c), provides only for approximate solution, the obtained shapes
are true in principle.
Table 5

Frequency factor l for CFCF square plates with linear thickness variation in the both directions

by Theory h0=Ly Mode

1,1 2,1 3,1 1,2 2,2 3,2 1,3 2,3 3,3

bx ¼ 0.25

0.25 CPT — 0.5787 1.9491 4.7245 1.9491 3.6621 6.6644 4.7245 6.6644 9.7979

FOPT 0.1 0.5683 1.8698 4.3850 1.8698 3.3970 5.9657 4.3850 5.9657 8.4416

0.2 0.5476 1.7033 3.7335 1.7033 2.9287 4.8490 3.7335 4.8490 6.5565

0.3 0.5206 1.5116 3.1186 1.5116 2.4825 3.9319 3.1186 3.9319 5.1739

0.4 0.4909 1.3308 2.6312 1.3308 2.1192 3.2594 2.6312 3.2594 4.2207

HOPT 0.1 0.5685 1.8707 4.3889 1.8707 3.4003 5.9760 4.3889 5.9760 8.4640

0.2 0.5481 1.7079 3.7524 1.7079 2.9442 4.8873 3.7524 4.8873 6.6237

0.3 0.5218 1.5223 3.1589 1.5224 2.5132 4.0007 3.1589 4.0007 5.2861

0.4 0.4930 1.3487 2.6888 1.3487 2.1641 3.3528 2.6888 3.3528 4.3682

0.5 CPT — 0.5204 1.5659 3.6115 1.7129 3.0779 5.5512 4.0509 5.6196 8.2003

FOPT 0.1 0.5144 1.5225 3.4491 1.6634 2.9172 5.1270 3.8322 5.1794 7.3421

0.2 0.5012 1.4307 3.1064 1.5499 2.6046 4.3596 3.3716 4.3852 5.9722

0.3 0.4830 1.3155 2.7260 1.4087 2.2748 3.6484 2.8937 3.6605 4.8501

0.4 0.4617 1.1962 2.3817 1.2667 1.9844 3.0859 2.4891 3.0936 4.0271

HOPT 0.1 0.5144 1.5229 3.4505 1.6639 2.9191 5.1320 3.8347 5.1853 7.3535

0.2 0.5015 1.4328 3.1143 1.5529 2.6142 4.3831 3.3857 4.4117 6.0179

0.3 0.4837 1.3206 2.7469 1.4163 2.2953 3.6953 2.9250 3.7116 4.9315

0.4 0.4630 1.2054 2.4128 1.2800 2.0162 3.1535 2.5366 3.1654 4.1372
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Fig. 4. Free vibration modes for CFCF square plate with linear thickness variation in both directions: h0=Ly ¼ 0:2,
bx ¼ 0:25, by ¼ 0:5, v ¼ 0:3: HOPT solution.

Table 6

Comparison of the frequency factors l for Reissner-Mindlin S*S*S*S* square plates with parabolic thickness variation

in the x direction, (arched form, d ¼ 0:5, n ¼ 0:3,k ¼ p2=12)

h0=Ly Work Mode

1 (1,1) 2 (2,1) 3 (1,2) 4 (2,2) 5 (1,3) 6 (3,1) 7 (3,2) 8 (2,3)

0.1 Present 1.5568 3.7959 3.8085 5.8475 7.2049 7.2655 9.0839 9.1839

Al-Kaabi and Aksu [14] 1.5825 3.8732 3.8864 5.8834 7.4975 7.5683 9.1543 9.2762

0.2 Present 1.4279 3.2864 3.3032 4.7969 5.8422 5.8488 7.0432 7.0825

Al-Kaabi and Aksu [14] 1.4526 3.3301 3.3452 4.8023 5.8752 5.8790 6.9424 6.9761
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Table 7

Frequency factor l for CCCC square plates with parabolic thickness variation in the x directions, (arched form)

d Theory h0=Ly Mode

1,1 2,1 3,1 1,2 2,2 3,2 1,3 2,3 3,3

0.25 CPT — 3.3157 6.7387 12.1298 6.8267 10.0079 15.2278 12.2594 15.3302 20.3699

FOPT 0.1 3.0415 5.8365 9.7926 5.8986 8.2714 11.8566 9.8721 11.8998 15.0623

0.2 2.5344 4.4779 6.9824 4.5100 6.0684 8.2589 7.0162 8.2702 10.1398

0.3 2.0813 3.4768 5.2382 3.4945 4.6162 6.1380 5.2541 6.1418 7.4313

0.4 1.7319 2.7952 4.1521 2.8067 3.6791 4.8374 4.1610 4.8390 5.8171

HOPT 0.1 3.0465 5.8544 9.8405 5.9174 8.3072 11.9257 9.9223 11.9714 15.1703

0.2 2.5565 4.5438 7.1279 4.5791 6.1795 8.4472 7.1695 8.4646 10.4066

0.3 2.1230 3.5851 5.4512 3.6076 4.7855 6.4082 5.4773 6.4182 7.7980

0.4 1.7906 2.9327 4.4043 2.9493 3.8835 5.1560 4.4240 5.1638 6.2286

0.5 CPT — 2.9428 5.9543 10.7304 6.0915 8.9525 13.5535 10.7897 13.8529 18.2497

FOPT 0.1 2.7420 5.2909 8.9859 5.4058 7.6223 10.9760 9.0766 11.1258 14.0809

0.2 2.3434 4.1952 6.6405 4.2697 5.7661 7.9029 6.7123 7.9491 9.7694

0.3 1.9623 3.3237 5.0699 3.3712 4.4605 5.9663 5.1128 5.9835 7.2572

0.4 1.6545 2.7036 4.0551 2.7360 3.5884 4.7417 4.0810 4.7494 5.7207

HOPT 0.1 2.7454 5.3031 9.0192 5.4186 7.6483 11.0260 9.1099 11.1809 14.1628

0.2 2.3595 4.2446 6.7523 4.3229 5.8551 8.0531 6.8323 8.1146 9.9924

0.3 1.9944 3.4098 5.2422 3.4649 4.6040 6.1933 5.3019 6.2284 7.5768

0.4 1.7018 2.8176 4.2663 2.8584 3.7656 5.0132 4.3107 5.0368 6.0886

Table 8

Frequency factor l for CCCC square plates with parabolic thickness variation in the x directions, (concave form)

d Theory h0=Ly Mode

1,1 2,1 3,1 1,2 2,2 3,2 1,3 2,3 3,3

0.25 CPT — 3.0380 6.2144 11.1380 6.1022 9.1095 13.8996 10.8766 13.8533 18.5053

FOPT 0.1 2.8280 5.4937 9.2460 5.4175 7.7458 11.1863 9.1072 11.1680 14.2399

0.2 2.4144 4.3255 6.7669 4.2899 5.8505 8.0060 6.7211 8.0022 9.8532

0.3 2.0202 3.4123 5.1402 3.3954 4.5188 6.0249 5.1225 6.0241 7.3063

0.4 1.7023 2.7701 4.1009 2.7605 3.6310 4.7804 4.0918 4.7799 5.7535

HOPT 0.1 2.8316 5.5076 9.2843 5.4302 7.7727 11.2411 9.1412 11.2211 14.3245

0.2 2.4311 4.3801 6.8932 4.3408 5.9407 8.1662 6.8369 8.1594 10.0771

0.3 2.0533 3.5060 5.3309 3.4838 4.6624 6.2612 5.3013 6.2574 7.6241

0.4 1.7503 2.8926 4.3318 2.8768 3.8102 5.0641 4.3105 5.0603 6.1271

0.5 CPT — 2.3878 4.9025 8.7425 4.6537 7.1385 10.8896 8.1054 10.8098 14.5002

FOPT 0.1 2.2835 4.5231 7.7170 4.3327 6.4168 9.3996 7.2995 9.3726 12.1072

0.2 2.0494 3.7933 6.0592 3.6893 5.1880 7.2173 5.8872 7.2188 8.9821

0.3 1.7915 3.1256 4.7835 3.0742 4.1753 5.6344 4.7155 5.6393 6.8881

0.4 1.5591 2.6074 3.8976 2.5811 3.4362 4.5618 3.8663 4.5648 5.5225

HOPT 0.1 2.2850 4.5294 7.7358 4.3375 6.4291 9.4270 7.3118 9.3971 12.1505

0.2 2.0573 3.8233 6.1356 3.7129 5.2391 7.3159 5.9421 7.3121 9.1247

0.3 1.8090 3.1841 4.9126 3.1223 4.2681 5.7962 4.8176 5.7978 7.1134

0.4 1.5870 2.6905 4.0637 2.6519 3.5627 4.7677 4.0054 4.7688 5.7981

I. Shufrin, M. Eisenberger / Journal of Sound and Vibration 290 (2006) 465–489 483



ARTICLE IN PRESS

Table 9

Frequency factor l for CCCC square plates with parabolic thickness variation in the x directions, (symmetric concave

form)

d Theory h0=Ly Mode

1,1 2,1 3,1 1,2 2,2 3,2 1,3 2,3 3,3

0.25 CPT — 3.0944 6.3631 11.3249 5.9777 9.1365 14.0013 10.5448 13.7220 18.4921

FOPT 0.1 2.8829 5.6132 9.3636 5.3408 7.7823 11.2528 8.9202 11.1268 14.2551

0.2 2.4653 4.4062 6.8235 4.2703 5.8885 8.0423 6.6586 8.0103 9.8723

0.3 2.0651 3.4700 5.1736 3.4013 4.5503 6.0484 5.1044 6.0394 7.3215

0.4 1.7411 2.8154 4.1253 2.7756 3.6568 4.7988 4.0891 4.7951 5.7664

HOPT 0.1 2.8866 5.6283 9.4064 5.3523 7.8094 11.3113 8.9504 11.1778 14.3415

0.2 2.4822 4.4655 6.9629 4.3169 5.9799 8.2121 6.7636 8.1631 10.1006

0.3 2.0985 3.5710 5.3816 3.4834 4.6961 6.2958 5.2695 6.2680 7.6439

0.4 1.7898 2.9467 4.3749 2.8849 3.8395 5.0950 4.2935 5.0721 6.1474

0.5 CPT — 2.5494 5.2154 9.1261 4.4997 7.2047 11.1009 7.6484 10.5409 14.4563

FOPT 0.1 2.4367 4.7909 7.9973 4.2182 6.4917 9.5571 6.9687 9.2326 12.1207

0.2 2.1852 3.9874 6.2143 3.6437 5.2693 7.3133 5.7265 7.2047 9.0165

0.3 1.9087 3.2658 4.8745 3.0746 4.2482 5.6962 4.6488 5.6635 6.9251

0.4 1.6600 2.7142 3.9593 2.6046 3.4975 4.6065 3.8434 4.5960 5.5529

HOPT 0.1 2.4384 4.7987 8.0212 4.2222 6.5044 9.5888 6.9782 9.2545 12.1653

0.2 2.1938 4.0240 6.3099 3.6633 5.3216 7.4261 5.7704 7.2886 9.1713

0.3 1.9279 3.3361 5.0336 3.1151 4.3430 5.8780 4.7324 5.8079 7.1552

0.4 1.6903 2.8126 4.1603 2.6653 3.6265 4.8340 3.9600 4.7850 5.8362
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3.3. Plates with parabolic thickness variation in the x-direction

For confirmation, the available results from Ref. [14] are compared in Table 6 with those
from the current study. It is seen that there is only a few percent difference between the results.
This is because the results predicted by the energy-based finite difference solution technique [14]
are generally higher than the expected value. The dimensionless values of natural frequencies for
the three types of parabolic variation of thickness are given in Tables 7–9 for CCCC boundary
conditions.
4. Conclusions

The free vibrations of rectangular thick plates with variable thickness and different boun-
dary conditions have been investigated by using the extended Kantorovich method.
This approach is combined with the exact element method for the vibration analysis of members
with variable cross-section. Two shear deformation theories, in which the effects of both
transverse shear stresses and rotary inertia are accounted for, have been applied to the ana-
lysis. The number of numerical examples demonstrates the applicability and versatility of the
present method.
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The advantages of the proposed method are:
�
 Any polynomial variation of the thickness throughout the plate can be considered.

�
 The shape functions are exact solutions for the system of the differential equations of motion
and they are derived automatically. As a result, the solution for the free vibration problems is
accurate (depending only on the accuracy of the numerical calculations), as the only
approximation is assuming a one-term separable solution.

�
 The exact solution is guaranteed when at least two edges of constant thickness direction of the
plate are simply supported and the problem is separable (Levy case). For other cases, it has
been found that the proposed separation of variables, Eqs. (5a–c), leads to accurate natural
frequency values and good approximation for the free vibration modes.
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Appendix A. Recurrence formulas for FOPT solution

For i ¼ 0 . . .1:

wiþ2 ¼
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fiþ2 ¼
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Appendix B. Recurrence formulas for HOPT solution

In contrast with the FOPT analysis, when unknown polynomial terms could be found one after
another, in the current HOPT formulation the following algorithm should be used to calculate
them.
Firstly, the f 2 term is calculated for i ¼ 0 from the following expression:

f 2 ¼
1
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Then for i ¼ 0 . . .1, the fiþ2 terms are determinated by
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Now the terms wi+4 and fi+3 can be found from the system of two equations:
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where the terms A, B are defined by the following expression:
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